STENON

Sachgerechte Validierung des Stenon FarmLab Sensorsystems unter Berücksichtigung von Messvolumen und Bodenheterogenität

STENON

Anlass und Fragestellung

Bodenuntersuchungen zeit- und kosteneffizient gestalten

Künftige Landnutzung erfordert eine präzisere Erfassung des Bodenzustands

- Präzisere Maßnahmen (Düngung, Bewässerung, Aussaat, Bodenbearbeitung, Pflanzenschutz) für mehr Ertrag und/oder Qualität
- Reduzierung der Umweltbelastung
- Nachweis von Umweltleistungen (Kohlenstoffspeicherung)

Lösungsansatz: in-situ-Messung mit Sensoren

- Sofortige Verfügbarkeit der Daten
- Mehr Messungen durch geringere Kosten

⇒bessere zeitliche und räumliche Anpassung von Maßnahmen

Unterschiede zwischen konventionellen Analyseverfahren und in-situ Sensoren

- Probenkonditionierung entfällt, schnelle Messung, ohne Trennung, unkontrollierte Bedingungen
- oftmals andere Messprinzipien

Konventionell (Messung *ex situ*)

Einstich, Probenentnahme

Verpackung, Zuordnung Konditionierung: Kühlung (für Nmin, Smin), Auftauen, Trocknen, Zerkleinern, Sieben, Wägen

Trennung (Extraktion) Messung im Labor

Berechnung

Bericht: Zuordnung, Übermittlung

Bodensensor (Messung *in situ*)

Einstich

Messung im Freiland, Zuordnung

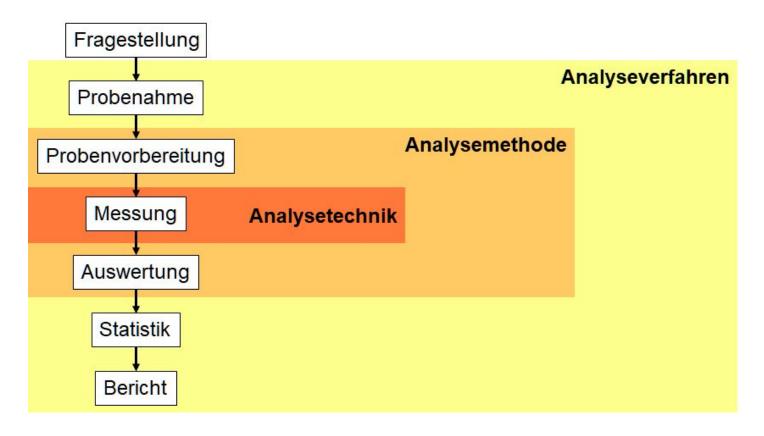
Berechnung

Bericht: Zuordnung, Übermittlung

Neue Bodenuntersuchungsmethoden müssen zum etablierten System passen

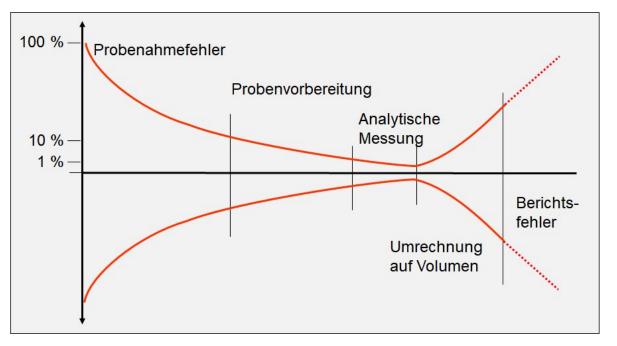
Etabliertes System

- Feldversuche, langjährige empirische Basis
- Einheit aus Bodenuntersuchungsmethoden und Düngungsempfehlungen
- Rechtsnormen
- Anerkennung in der Praxis


⇒ Wie können neue Bodenuntersuchungsmethoden sachgerechte validiert werden?

STENON

Variationsursachen bei der Bodenanalyse


Analyseverfahren: Chemische Sichtweise

Variationsursachen im Analyseverfahren

Beprobung

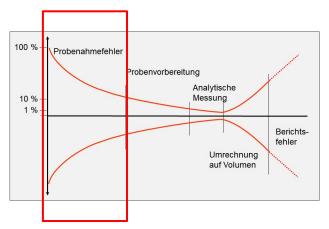
- Probenahme-Abstand
- Probenahme-Volumen
- Abdeckung der Fläche
- Zuordnungsfehler

Probenvorbereitung

- Homogenisierung,
- Zerkleinern, Sieben, Teilen
- Extraktion (Lösung, Filterung)

Analytische Messung

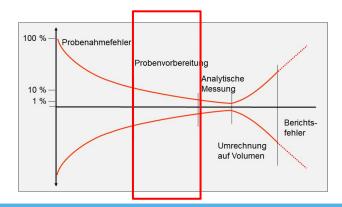
- Kalibrations- und Blindwertfehler
- Messvarianz


Berechnung & Bericht

Varianz bei der Probenahme

Mögliche Varianzursachen bei der Probengewinnung (bis zu 90 %):

- ungleichmäßige Beprobungstiefe
- ungleichmäßige Mengen im Bohrstock wegen Dichteunterschieden, Trockenheit ...
- die falsche räumliche Zuordnung der Proben (GPS-Fehler, Beschriftungsfehler)
- die Verschleppung von Material im Bohrstock und im Mischbehälter
- systematische Materialverluste
- Abweichungen von der Probenahmestrategie

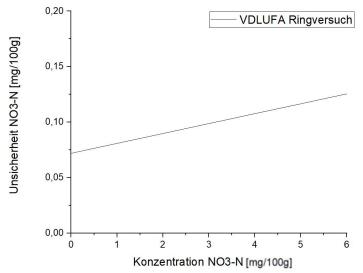


Fehler bei der Probenvorbereitung und analytischen Messung

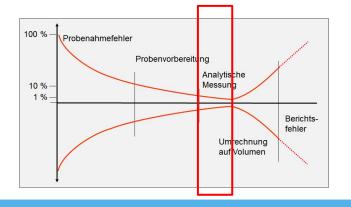
Probenvorbereitung:

Gefrieren, Auftauen, Trocknung, Zerkleinerung, Homogenisierung, Siebung, Extraktion, Entnahme von Aliquoten, Wägung

- Chemische Veränderungen
- Sortierung des Material durch Schwerkraft, Materialunterschiede



Fehler bei der analytischen Messung

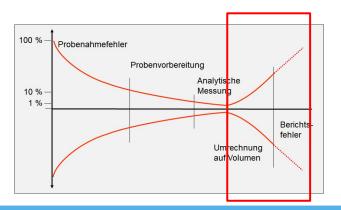


Fehler bei der analytischen Messung (in und zwischen Laboren)

- Kalibrations- und Blindwertfehler
- Messvarianz

VDLUFA Unsicherheit-Ringversuch METHODENBUCH I: 7. Teillfg. 2016 - E 5 Ermittlung von Messunsicherheiten □ sehr geringer Fehler (quasi vernachlässigbar)

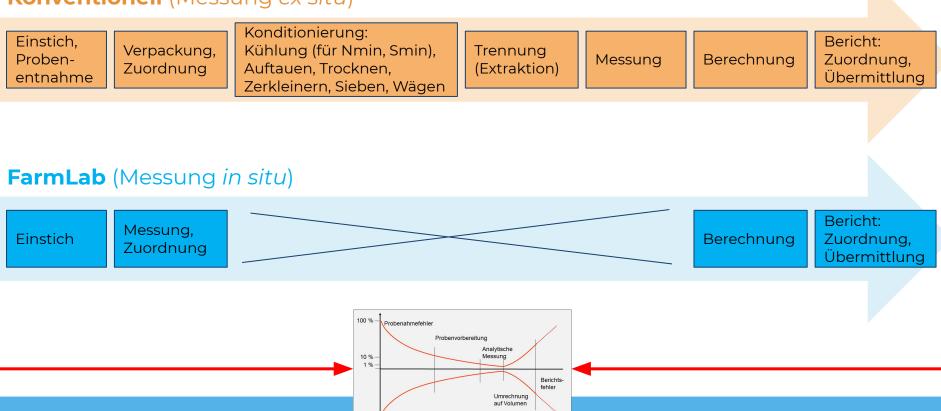
Berechnungsfehler, Berichtsfehler, Datenübertragungsfehler



Berechnungsfehler Lagerungsdichte

Umrechnung auf Volumen -> nächste Folie

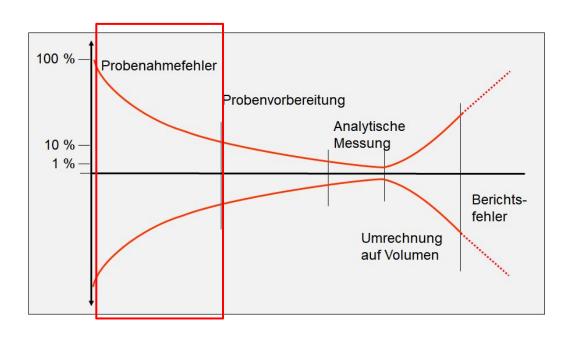
Berichtsfehler, Datenübertragung


- fehlerhafte Einträge (Proben ID verwechselt, Spalte verwechselt)
- Formatierung ("." ",")

Analyseverfahren im Vergleich

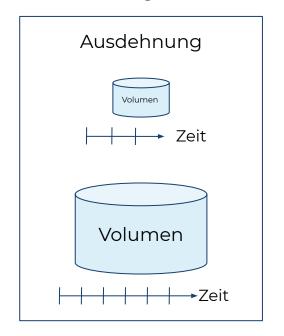
STENON

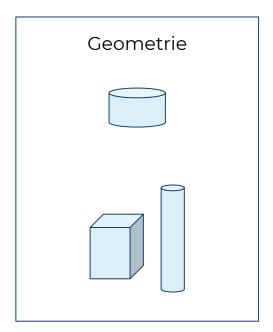
Konventionell (Messung *ex situ*)

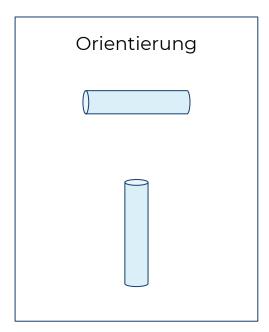


STENON

Der Beprobungsbereich als Variationsursache bei der Bodenanalyse


Die Probenahmevarianz ist Hauptursache für Fehler/Variabilitäten

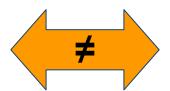


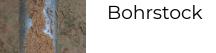

Stützung (Sample Support): Ausdehnung, Granularität

Stützung (Geostatistik): Ausdehnung (Zeit, Fläche, Volumen), Geometrie und Orientierung des erfassten Bereichs

Unterschiede der Stützung bei Bodensensor und **STENON** konventioneller Beprobung

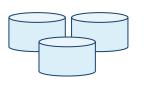
Impedanzspektroskopie

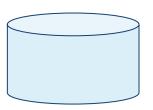

Messvolumen ca. 19 cm³


Optische Spektroskopie

Messvolumen ca. 0.9 cm³

Messung an identischem Material nicht möglich





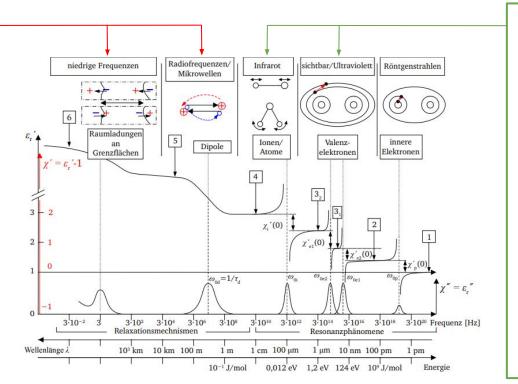
Auswirkung unterschiedlichen Volumens

- Mit zunehmender Ausdehnung verringert sich die Mikrovarianz
- Bei Vergleichen verbessert sich oft die Korrelation mit zunehmendem Volumen
- => Change of support problem, modyfiable areal unit problem
- => Untersuchung des Volumeneffektes bei der Validierung des FarmLab Bodensensorsystems

STENON

Material & Methoden

We are the innovator and market leader in real-time soil analysis technology


Fusion verschiedener Messprinzipien

STENON

Elektrische Impedanzspektroskopie

Messvolumen ca. 19 cm³

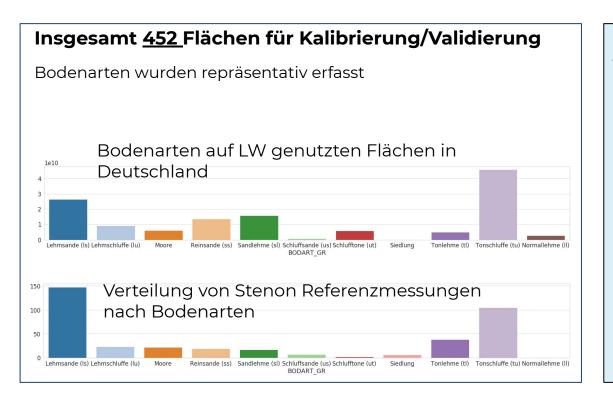
Elektromagnetisches Spektrum und Messprinzipien

Optische Spektroskopie

Messvolumen ca. 0.9 cm³

Referenzmethoden: Übersicht

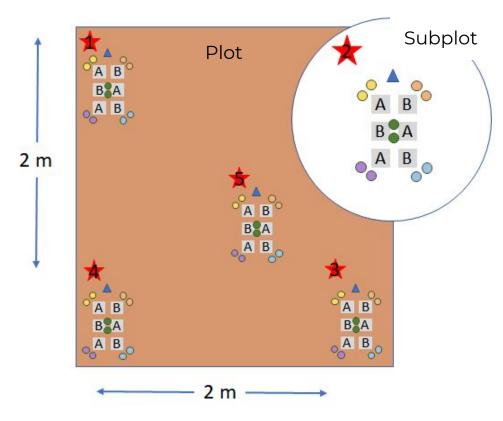
Die Analysemethoden sind die typischen VDLUFA Standard-Methoden (Verbandsmethoden nach VDLUFA Methodenhandbuch und DIN)



- Nmin und NO₂: Bassler & Hoffmann (1997)
- 2. **Nt**: Dumas-Methode
- 3. **Corg und Humus**: Veraschung, Korrektur für CO_3^{2-} . Humus aus Corg berechnet
- 4. **P und K**: CAL-Extraktion
- 5. **Mg**: CaCl₂-Extraktion
- 6. **pH**: in CaCl₂-Lösung
- 7. **H₂O**: Gravimetrisch, vor und nach Trocknung bei 105° C
- 8. **Textur**: Kombination von Nasssiebung und Pipettmethode nach Köhn

Analysen durch 3 bzw. 5 zertifizierter Labore, darunter agrolab, Eurofins, LUFA Speyer

Untersuchungsstandorte: Gemüsebau- und Ackerböden in Deutschland


Untersuchung des Volumeneffekts

Region 1 - 2021: 42 Flächen, 3 Labore Pro Plot 15 Referenzdatensätze, insgesamt 42 * 15 = 630 FarmLab: 42 * 30 = 1260

Region 2 - 2021: 40 Flächen, 5 Labore Pro Plot 25 Referenzdatensätze, insgesamt 40 * 25 = 1000 FarmLab: 40 * 30 = 1200

Beprobungsschema

STENON

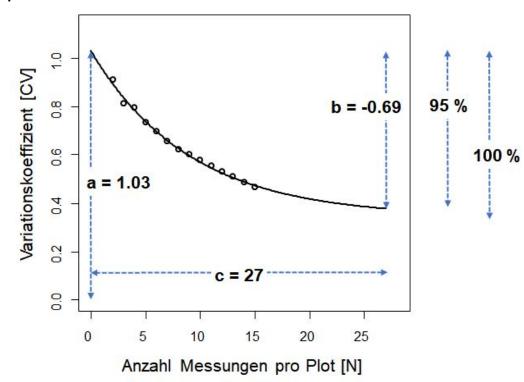
- A FarmLab
- **B** Positionen

Messvolumen 19 cm³, 0.9 cm³

- Bodenchemie und
- Wasser
- Labore 1 bis 5

Messvolumen ca. 320 cm³, FM ca. 500 g

Statistische Analyse:

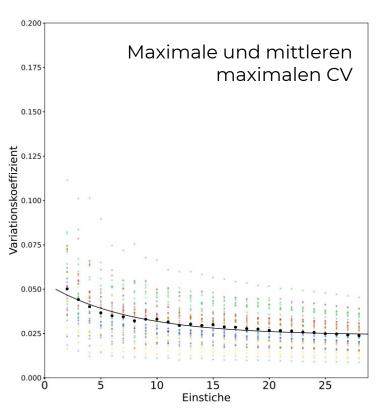

STENON

Abhängigkeit des Variationskoeffizienten CV von der Anzahl der Messungen pro Plot

$$CV = a + b(1 - \exp(-3N/c))$$

Parameter c:

Anzahl der Messungen um auf 95% der hypothetischen CV-Absenkung zu kommen


Statistische Analyse:

Abhängigkeit des Variationskoeffizienten von der

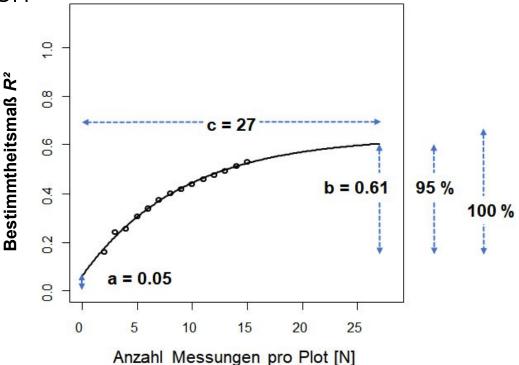
Anzahl der Messungen pro Plot

Für FarmLab und Labordaten:

- Für jede Anzahl (2 bis N) von Einstichen/Proben pro Plot
 - 1.1. Auswahl des maximalen CV pro Plot
 - 1.2. Berechnung des mittleren maximalen CV
- 2. Anpassung der Funktion an die mittleren *CV* in Abhängigkeit von *N*

Statistische Analyse:

STENON

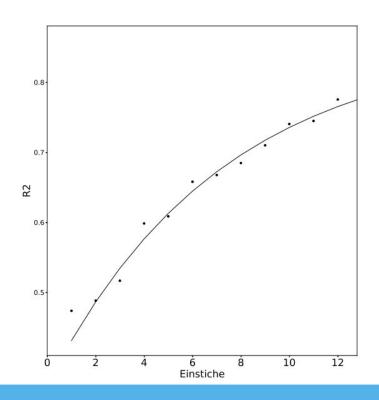

Bestimmung der Abhängigkeit von R² von der

Anzahl der Einstiche/Proben

$$R^2 = a + b(1 - \exp(-3N/c))$$

Parameter c:

Anzahl der Messungen um auf 95% des hypothetischen maximalen R^2 zu kommen



Statistische Analyse: Bestimmung der Abhängigkeit von R² von der Anzahl der Einstiche/Proben

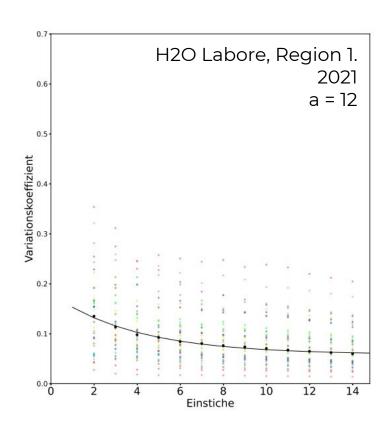
Für FarmLab und Labordaten:

- 1. Auswahl von 2 Labore als Referenz.
 - 1.1. Berechnung des Mittelwertes pro Plot
 - 1.2. Nutzung der übrigen Labordaten zur Variation von N in Schritt 2 und 3
- Für jede Anzahl (2 bis N) von Einstichen/Proben pro Plot
 - 2.1. Berechnung des R^2 für jede Kombination
 - 2.2. Berechnung des minimalen R^2 zwischen Stichprobe und Referenz
- 3. Anpassung der Funktion an die minimalen R² in Abhängigkeit von N

STENON

Ergebnisse

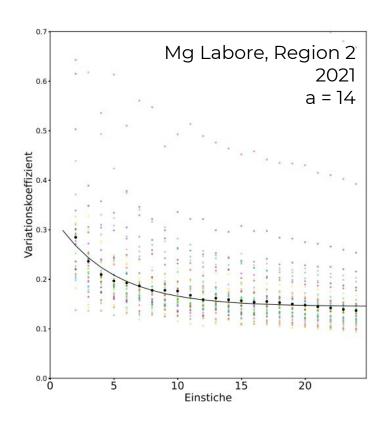
Anzahl der Proben zur Optimierung des CV

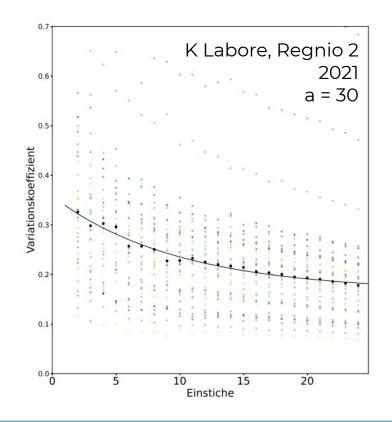


Boden- parameter	рН	P-CAL	K-CAL	Mg- CaCl ₂	Corg	H ₂ O	Nmin	NO ₃	Nt	MW
FarmLab Region 1/2021	23	23	15	20	18	18	24	25	31	22
Konventionell Region 1/2021	14	14	14	24	17	12	26	27	_*	19
FarmLab Region 2/2021	16	18	28	17	24	26	31	20	19	22
Konventionell Region 2/2021	18	21	30	14	17	19	24	24	18	21

^{*} Kein sinnvolles Ergebnis

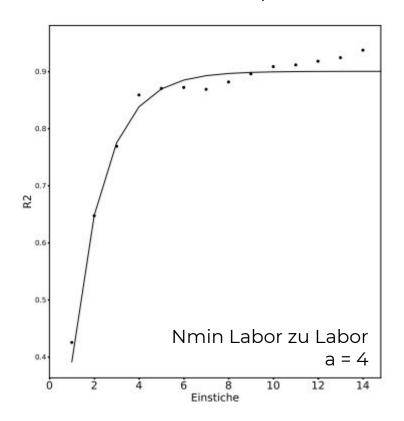
CV Region 1 - 2021

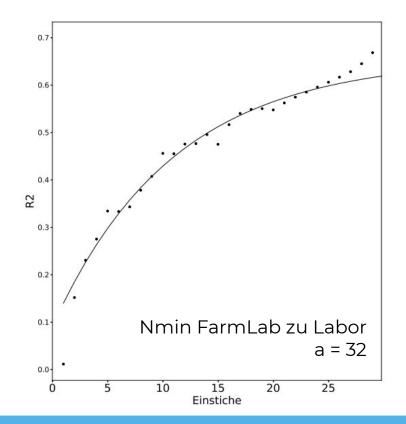




CV Region 2 - 2021

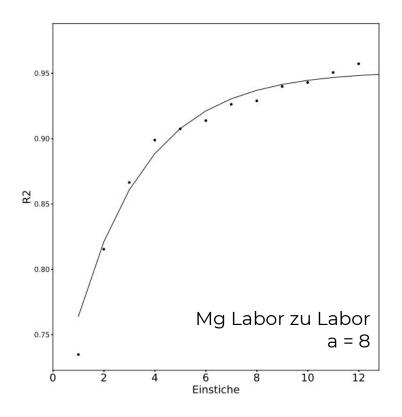
Anzahl der Proben zur Optimierung von R²

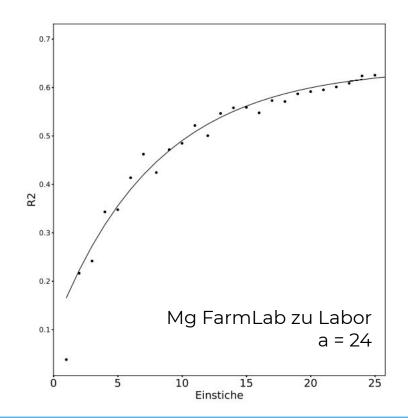



Bodenparameter	рН	P-CAL		Mg- CaCl ₂	Corg	H ₂ O	Nmin	NO ₃	Nt	MW
FarmLab gegen Labormittel- werten	20	29	(40*)	24	34	17	32	30	27	19
Einzellabore gegen Labormittel	9	9	16	8	9	6	4	5	6	8

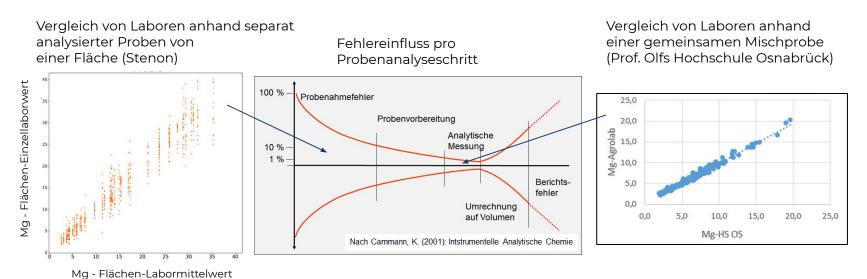
^{*} Vorläufiges Messverfahren für K, Beta-Version

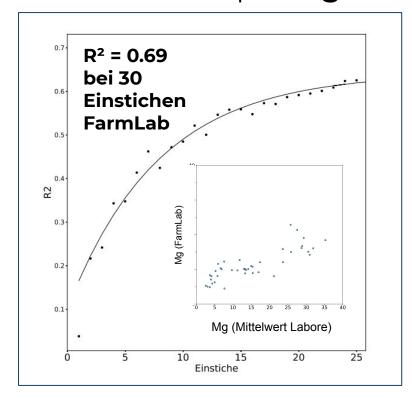
Korrelation (R²) für **Nmin** in Abhängigkeit von der Anzahl Proben/Einstiche

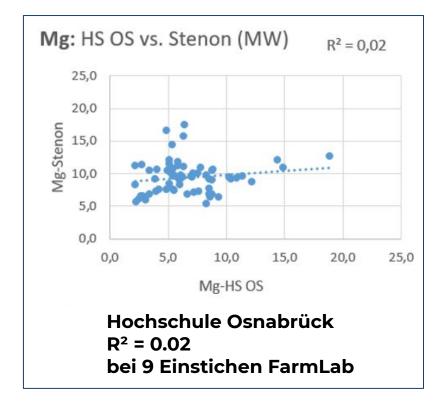




Korrelation (R²) für **Mg** in Abhängigkeit von der **STENON** Anzahl Proben/Einstiche







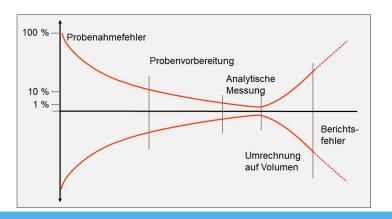
Ungeeigneter Validierungsansatz (Mg)

Konsequenz unzureichender Anzahl von Einstichen: Beispiel **Mg**

STENON

Schlussfolgerungen

Schlussfolgerungen für die Validierung von Bodensensoren



Stützung von Sensor und konventioneller Bodenprobe können unterschiedlich sein

Stützung (Messvolumen) des Sensors und die Mikrovarianz beachten

→ Für FarmLab sind 17 bis 34 Einstiche nötig (Durchschnitt: 19)

Der Laborfehler, bestimmt anhand von Mischproben, ist kein Vergleichsmaßstab da hierbei der Probenahmefehler vernachlässigt wird

